pendule
- Teknologia orokorra, Teknologia orokorra
- en catenary hanger; brace
- es péndola
- eu pendulu
pendule
- ca pèndola f
- de Fahrdrahthänger m; Hängedraht m
- en catenary hanger; brace
- es péndola f
- eu pendulu
- gl tirante m de fixación
- it pendino m
- pt suporte m da catenária
- ca pèndol m
- de Überhöhungspendel n
- en pendulum
- es péndulo m
- eu pendulu
- gl péndulo m
- it pendolo m
- pt pêndulo m
pendule m
- ↑ [PDF]Alexandre Moatti, Coriolis, naissance d’une force, sur le site education.fr, consulté le 31 mai 2016.
- ↑ William Tobin, Léon Foucault, EDP Sciences, , p. 144
- ↑ Roudaux, de Vaucouleurs, Astronomie, les astres, l'univers, Paris, Larousse, , p. 25, 26
- ↑ Florin Abelès, La Science contemporaine, vol. 1 : Le XIXe siècle, Paris, Presses universitaires de France, coll. « Histoire générale des sciences » (no 188), , 757 p. (ISBN 978-2-13-046888-2, OCLC 1068216507), p. 105
- ↑ William Tobin (trad. James Lequeux), Léon Foucault : le miroir et le pendule, EDP Sciences, , 354 p. (ISBN 978-2-86883-615-1)
- ↑ Musée du temps de Besançon, Le pendule de Foucault : Fiche professeur, La mesure du temps (lire en ligne
[PDF]), p. 4
- ↑ De Rop et Moreau 2002, p. 263.
- ↑ Jones Lamprey A.B. M.B. & H. Schaw R.E. (1851) LXI. An account of pendulum experiments made at Ceylon, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:12, 410-412, DOI: 10.1080/14786445108645734
- ↑ Hagen, J. G. and de Vregille, P., "La Rotation de la Terre ses Preuves Mécaniques Anciennes et Nouvelles", Specola Astronomica Vaticana Pubblicazioni Serie Seconda, vol. 1, p. Bi–BPVI, 1912.
- ↑ Il s'agit de la vitesse initiale par rapport au dôme du Panthéon, c'est-à-dire par rapport à la Terre et non de la vitesse absolue qui est celle de la rotation de la Terre par rapport aux astres à la latitude du Panthéon.
- ↑ hors de notre galaxie, qui ne forme pas un référentiel galiléen, car notre galaxie est en rotation sur elle-même.
- Brian Greene La Magie du cosmos Robert Laffont. 2005 p. 98 à 101
- ↑ Toutefois, même si le principe de Mach est vrai, on constaterait tout de même une très faible dérive par rapport aux étoiles distantes, due à l’influence de la masse de la Terre, qui entrerait aussi en compte dans les forces d’inertie.
- William Tobin et James Lequeux (adapt. française), Léon Foucault : le miroir et le pendule, Les Ulis, EDP Sciences, , 368 p. (ISBN 978-2-86883-615-1, OCLC 742949209), p. 169
- ↑ Assis à cheval du pendule comme sur une balançoire, la force de Coriolis disparaît (voir l'animation B) : l’observateur est dans un système de référence en « rotation libre » (une géodésique « pour les rotations ») dans lequel, selon la théorie de la relativité générale, un espace-temps avec métrique non euclidienne et courbée est valide.
- ↑ (en) Max Born, Einstein's theory of relativity. Rev. ed.,, Dover Publications, (OCLC 318208783)
- ↑ Jean Mawhin, « Les fondements de la mécanique en amont et en aval de Poincaré. : réactions belges à l’expérience du pendule de Foucault », Philosophiques, vol. 31, no 1, 2004, p. 11-38.
- ↑ « Et pourtant elle tourne… », sur le15ejour.uliege.be (consulté le )
- ↑ Pendule de Foucault à Mons
- ↑ Depliant décrivant le Pendule de Foucault de la Cathédrale Sainte-Waudru en 2015
- ↑ « Pendule de Foucault - Technopolis », sur Rustpunt (FR) (consulté le )
- ↑ Ciel et Terre, 1956, vol. 72-73.
- ↑ Pendule de Foucault installé à l'Université de Montréal
- ↑ Charles Kittel, Walter D. Knight et Malvin A. Ruderman (1972). Mécanique, berkeley : cours de physique, volume 1 (trad. par Pierre Lallemand), éditions Armand Colin éditeur, Paris, p. 77.
- ↑ Musée des Arts et Métiers, « Sphère du pendule de Léon Foucault », sur arts-et-metiers.net (consulté le ).
- ↑ W. Tobin, J. Lequeux, T. Lalande, Les pendules de Foucault, La revue du Musée des arts et métiers, 48, 63-69 (2007).
- ↑ « Bulletin de la Société astronomique de France », sur BnF, Gallica, p. 465
- ↑ Christian Meas - Ouest-France, « Trémentines : Bodet remonte le pendule de Foucault au Panthéon de Paris », sur cholet.maville.com, (consulté le ).
- ↑ « Le pendule de Foucault décroche », sur www.sciencesetavenir.fr (consulté le )
- ↑ La latitude du palais Granvelle est 47° 14′ 09″.
- ↑ « ULH 2017 - Pendule de Foucault », sur pendule.univ-lehavre.fr (consulté le )
- ↑ AlainHerveLeGall, « Pendule de Foucault - Foucault's Pendulum », (consulté le )
- ↑ « Le pendule de Foucault prend ses quartiers dans la Manu », sur ouest-france.fr, (consulté le )
- ↑ http://real-eod.mtak.hu/1406/1/Magyar_orvosok_1880_tartalommal.pdf (hu), pages 76–79.
- ↑ « history », sur physics.bgu.ac.il (consulté le )
- ↑ [1]
- ↑ Pendules de Marcel Bétrisey Ce site contient des informations pratiques sur la réalisation de petits pendules de Foucault
Wikipediako bilaketara joan
SARRERA DESBERDINA:
Pendule de Foucault
L'exponentielle complexe mise en facteur montre que la dynamique du pendule se décompose en un mouvement pendulaire simple (sinusoïdal de pulsation ) au sein d'un plan qui tourne lentement en raison de la rotation de la Terre () mais dont seule la composante verticale en ce lieu, , ne[pas clair] compte.
À chaque oscillation, le pendule repasse exactement par sa position de lancement qui est aussi sa position d'équilibre. On ne voit pas comment un tel mouvement peut être initié de manière simple. Dans le cas général, le pendule s'écarte de part et d'autre du plan tournant et ce n'est que par cet artefact de conditions initiales très difficiles à réaliser en pratique que le mouvement pourrait rester dans un plan et osciller au sein de ce plan comme un pendule simple.
Il suffit de tracer la courbe paramétrée par la partie réelle (longitude est) et la partie imaginaire (latitude nord) pour obtenir le tracé au sol de couleur verte de l'animation A (cliquer sur l'animation pour lire le programme de tracé en langage Gnuplot correspondant) même si la vitesse de rotation de la Terre est très exagérée (pour une visualisation des phénomènes) et de l'ordre d'une rotation en 110 secondes au lieu d'une rotation par 24 heures.
Si on met une caméra dans le plan d'oscillation du pendule, on obtient l'animation B où le référentiel terrestre tourne. On peut remarquer, contrairement au cas simple examiné précédemment mais qui correspondait à un lâcher difficilement réalisable, que le pendule n'oscille pas rigoureusement dans le plan tournant mais s'en écarte de part et d'autre selon l'ellipse de couleur bleue décrite dans la grande parenthèse de l'équation (3).
Il est également possible de voir le même pendule depuis le soleil, c’est-à-dire depuis une caméra fixe par rapport aux étoiles (animation C).
Pour le livre d'Umberto Eco, voir Le Pendule de Foucault.
Le pendule de Foucault, du nom du physicien français Léon Foucault, est un dispositif expérimental conçu pour mettre en évidence la rotation de la Terre par rapport à un référentiel galiléen. Le résultat de l'expérience dans le référentiel non galiléen lié à un observateur terrestre s'explique par l'effet de la force de Coriolis[1].
« […] les académiciens de Florence avaient observé, vers 1660, le déplacement du plan d'oscillation du pendule. Mais ils ignoraient la cause de ce déplacement. Le physicien français, au contraire, avait prévu qu'il devait avoir lieu comme conséquence du mouvement de la Terre. C'est en voyant une tige cylindrique fixée dans le prolongement de l'arbre d'un tour, osciller dans un plan fixe pendant la rotation de l'arbre, qu'il conçut la possibilité de prouver le mouvement de la Terre au moyen du pendule. »
— Pierre-Adolphe Daguin, Traité élémentaire de physique théorique et expérimentale : avec les applications à la météorologie et aux arts industriels., vol. 1, Toulouse, Paris, Edouard Privat, Dezobry & E. Magdeleine, , 2e éd. (1re éd. 1855), 652 p., 4 vol. : fig. ; in-8 (BNF 30295085, lire en ligne sur Gallica), chap. 3 (« Intensité de la pesenteur - Pendule - Rotation de la terre prouvée au moyen du pendule. »), p. 108-109
La première expérience a lieu le dans la cave de sa maison située au carrefour des rues d'Assas et de Vaugirard (Paris)[2],[3]. Avec l'aide de François Arago, l'expérience sera renouvelée le 3 février 1851 à l'Observatoire de Paris (l'invitation précisait "Vous êtes invités à venir voir la Terre tourner dans la salle méridienne de l'Observatoire de Paris"). La première démonstration publique date de quelques mois plus tard, toujours en 1851, le pendule étant accroché à la voûte du Panthéon de Paris. L'intérêt du pendule, imaginé et réalisé par Foucault, est de mettre en évidence la rotation de la Terre, manifestée par la déviation constante du plan d'oscillation du pendule.
Il ne semble pas que Foucault ait été informé des travaux de Coriolis portant sur les lois de la dynamique dans un référentiel non inertiel, datant de 1832. C'est donc de manière purement empirique qu'il mena son expérience, et seulement après coup que les mécaniciens expliquèrent l'expérience par l'utilisation de la force de Coriolis[4]. Si le principe général fut rapidement expliqué, il fallut attendre bien plus longtemps pour en comprendre toutes les subtilités, notamment avec la thèse de Kamerlingh Onnes en 1879[5].
Si l'on considère le plan déterminé par :
l'expérience met en évidence :
Cette expérience historique, répétée par la suite en de nombreux endroits non sans mal en raison des difficultés de sa mise en oeuvre[9], a permis de vérifier le bien-fondé des lois du mouvement de Newton.
Pour autant, elle n'est pas la première expérience démontrant la rotation de la Terre sur elle-même. Dès 1672, Jean Richer, envoyé en mission à Cayenne pour étudier l'opposition de Mars, avait observé qu'un pendule bat plus lentement à Cayenne qu'à Paris. Son expérience a permis de mesurer la diminution de la pesanteur due en partie à la force centrifuge elle-même, mais aussi à la plus grande distance entre le lieu de la mesure et le centre de masse de la Terre due au renflement équatorial produit par cette même force.
En 1851, les lâchers du pendule du Panthéon avaient un certain cérémonial. Léon Foucault décrit dans un compte rendu à l'Académie des Sciences la manière dont il procède, après avoir fait des essais dans une cave privée avec un pendule de 2 mètres de long, avec un pendule de 11 mètres accroché dans la salle de la Méridienne à l'Observatoire de Paris :
« Quand on veut procéder à l’expérience, on commence par annuler la torsion du fil et par faire évanouir les oscillations tournantes de la sphère. Puis, pour l’écarter de sa position d’équilibre, on l’embrasse dans une anse de fil organique dont l’extrémité libre est attachée à un point fixe pris sur la muraille, à une faible hauteur au-dessus du sol… dès qu’on est parvenu à l’amener au repos, on brûle le fil organique en quelque point de sa longueur ; sa ténacité venant alors à faire défaut, il se rompt, l’anse qui circonscrivait la sphère tombe à terre, et le pendule, obéissant à la seule force de la gravité, entre en marche et fournit une longue suite d’oscillations dont le plan ne tarde pas à éprouver un déplacement sensible. »
Aujourd'hui on trouve généralement un mécanisme magnétique qui permet d'entretenir le mouvement car, en raison des frottements de l'air, celui du Panthéon n'oscille que durant 6 heures.
L'expérience du pendule du Panthéon n'était pas suffisamment convaincante pour beaucoup de contemporains, ce qui a poussé Foucault à inventer l'année suivante le gyroscope dont l'axe reste parallèle à une direction fixe par rapport aux astres et cela, quelle que soit la latitude.
Pour simplifier, nous supposerons l'amplitude des oscillations suffisamment faible pour admettre que la masse oscillante du pendule se déplace horizontalement. Notons Oxy ce plan horizontal, avec O position de la masse au repos, Ox axe horizontal dirigé vers l'est (et donc tangent au parallèle), et Oy dirigé vers le nord (et donc tangent au méridien). Le troisième axe Oz sera vertical, dirigé vers le haut.
Sans tenir compte de la rotation de la Terre par rapport à un référentiel galiléen et dans le cas de petites oscillations, les équations du mouvement sont celles du pendule simple, à savoir :
où ω est la pulsation propre du pendule simple, soit :
où g est l'accélération de la pesanteur et l la longueur du pendule.
À titre d'exemple, si à l'instant t = 0, le pendule passe en O avec la vitesse V0
selon l'axe Ox, alors, la solution à ce système est :
Avec la rotation de la Terre par rapport à un référentiel galiléen, il faut tenir compte des forces induites par la rotation dont tout particulièrement l'accélération de Coriolis. Cette dernière s'écrit où est la vitesse du pendule par rapport à la Terre, est le vecteur unitaire porté par l'axe de rotation terrestre et Ω la vitesse de rotation angulaire de la Terre (à savoir un tour en un jour sidéral). Cette vitesse de rotation Ω est beaucoup plus faible que la pulsation propre ω du pendule.
Si on se trouve à la latitude θ, alors le vecteur se décompose, dans un repère lié au sol, en une composante de valeur sur une verticale du lieu et une composante dans un plan horizontal dont on peut orienter l'axe des coordonnées y vers le nord pour simplifier. Dans ce repère, le vecteur a pour coordonnées .
Si on note les coordonnées du vecteur , l'accélération de Coriolis subie par le pendule a pour composantes .
En négligeant l'influence des déplacements verticaux (h), les équations du mouvement dans le plan Oxy deviennent :
En utilisant la notation complexe , le système à résoudre se réduit à l'équation :
Proposons une solution classique de la forme , on en déduit que le complexe doit vérifier l'équation du second degré : qui s'écrit aussi :
En notant , les deux solutions de l'équation du second degré sont: et on peut alors en déduire que la solution générale du système est de la forme:
où et sont deux constantes indépendantes, en général complexes, qu'on peut déterminer par deux conditions initiales indépendantes comme, la position du pendule et sa vitesse à la date qui conduisent aux deux équations:
En remplaçant les expressions trouvées pour les deux constantes dans l'équation (1), on peut alors écrire une équation plus aisément interprétable :
Ainsi, si la vitesse initiale est nulle et si la position initiale est écartée du point d'équilibre, c'est-à-dire non nulle, la trajectoire au sol du pendule dans un repère tournant selon une pulsation est une ellipse parcourue en une période de .
Si est non nulle mais un imaginaire pur, le mouvement elliptique est perturbé par une oscillation perpendiculaire au plan principal d'oscillation et de même fréquence .
Examinons alors deux manières de lancer le pendule:
Le pendule de Foucault du Panthéon à Paris oscille avec une pulsation propre extrêmement proche de celle du pendule simple (les 8 premiers chiffres sont identiques) puisque est très petit devant . La période d'oscillation, vaut, si la longueur du fil fait 67 mètres, 16,42 secondes.
Le rapport du petit côté de l'ellipse sur le grand côté a pour expression et est très petit. Le pendule de Foucault oscille donc quasiment dans un plan qui tourne en raison de la rotation de la Terre. Mais le plan n'effectue un tour complet en 24 heures qu'aux pôles. À une latitude donnée, la période, , inversement proportionnelle au sinus de cette latitude, est plus longue. Cette période définit le jour pendulaire (pendulum day). Le sinus de 30° valant 1/2, un pendule de Foucault implanté à une latitude de 30° effectuerait un tour complet en 48 heures. La durée d'une rotation complète d'un pendule de Foucault situé à une latitude autre que l'équateur permet ainsi de déterminer cette latitude indépendamment de toute autre mesure. À la latitude nord de 48° 50′ 46″ du Panthéon à Paris, le plan fait un tour complet en T = 31 h 47 min et 16 s ; et, en une heure, il tourne de , où est la vitesse de rotation de la Terre sur elle-même, exprimée en radians par seconde, et correspondant à la durée du jour sidéral qui est de 23 heures, 56 minutes et 4 secondes.
La figure D, ci-contre, représente les 3 premières oscillations après un lâcher à vitesse nulle à une distance de 6 mètres à l'est du centre de la coupole du Panthéon. Étant donné la faible déviation vers le nord par rapport au déplacement est-ouest du pendule durant ces trois premières oscillations, l'échelle de l'ordonnée (sud-nord) est multipliée par 1000 ce qui correspond à un déplacement en millimètre. La force de Coriolis, perpendiculaire au déplacement et proportionnelle à la vitesse, fait dévier le pendule de son plan d'oscillation initial vers le nord ; elle est maximale lorsque la vitesse est maximale c’est-à-dire lorsque le pendule passe près du point d'équilibre, qu'il dépasse de au nord. Le pendule s'arrête au bout d'une demie période (donc 8,21 secondes) à l'opposé et a encore été dévié vers le nord. Au retour, le sens de la vitesse est inversé et la force de Coriolis fait déplacer le pendule vers le sud. Il passe à 0,86 mm au sud du point d'équilibre puis s'arrête à 5,4 mm au sud du point de lancement à la fin de la période d'oscillation soit après 16,42 secondes : avec un fil assez long respectant la latitude, il est possible de rendre (presque) visible à l’œil le déplacement sur le chemin circulaire entre une période et l'autre (vitesse tangentielle discrétisée), en transformant l'expérience en une démonstration spectaculaire. La vitesse du pendule par rapport à notre repère terrestre étant alors nulle, la force de Coriolis est donc nulle et le pendule repart dans la même direction en effectuant un point de rebroussement.
On remarque sur les figures A, B et C un poteau central éclairé par le soleil (le lâcher est simulé à midi un jour d'équinoxe) et son ombre portée sur le sol. Si l'extrémité du pendule se terminait par une tige de 0,86 mm de diamètre, le diamètre de ce poteau ne devrait pas excéder lui aussi 0,86 mm pour que ce dernier ne soit pas emporté à la première oscillation. Il semble néanmoins assez irréaliste d'installer un tel poteau, comme une fibre optique, car les fluctuations dues aux imperfections du lancer, aux courants d'air, aux vibrations de toute sorte, etc., semblent beaucoup plus importantes.
Le pendule de Foucault pose la question de la nature du repère qui sert de référence. En effet, tout mouvement est relatif. Si la Terre est en rotation, elle l'est par rapport à quelque chose ; on ne peut pas parler d'un mouvement sans définir un cadre de référence. Dans la physique classique non-relativiste, donc avec métrisation euclidienne (voir l’équation ci-dessus), on fait l'hypothèse que le pendule oscille dans un plan fixe dans le référentiel galiléen (inertiel pour ce qui concerne les rotations).
Les mesures montrent que les étoiles distantes[11] semblent former, en première approximation, un référentiel par rapport auquel le plan d’oscillation du pendule paraît être fixe, donc, en première approximation, le repère galiléen peut être lié aux étoiles distantes, et donc, dans l'équation précédente, la Terre tourne autour de son axe avec , égale à la vitesse de rotation sidérale.
Mais comment est défini exactement ce référentiel ? Qu’a-t-il de particulier pour que le pendule reste fixe par rapport à celui-ci et pas un autre ? Cette question reste toujours sujette à controverse[12].
Cette question ne posait pas de problème fondamental au temps de Foucault, car il était généralement admis à cette époque qu’il existait un espace absolu, tel que l’avait postulé Newton dans ses Principia Mathematica, par rapport auquel tous les mouvements sont définis, et qui forme donc un référentiel naturel d'oscillation du pendule.
Cette notion d’espace absolu avait été critiquée notamment par Leibniz et d’autres philosophes, mais restait un concept dominant vers la fin du XIXe siècle, d’autant que la découverte alors récente des ondes électromagnétiques par Maxwell semblait impliquer l’existence d’un éther luminifère qui constituait également un repère absolu. À cette époque, le physicien Ernst Mach essaye de nouveau d’apporter une critique de l’espace absolu, et postule le principe de Mach, selon lequel l’inertie des objets matériels est définie par rapport à un référentiel constitué par les masses distantes. Selon ce principe, dans un univers sans aucun objet matériel, l’espace absolu serait inobservable. On n’y sentirait donc aucune accélération ni force centrifuge, et le pendule n’y oscillerait pas selon un plan fixe. Si le principe de Mach est vrai, alors le référentiel d’oscillation du pendule serait le référentiel défini par la distribution de la matière de tout l’univers, et serait donc lié aux étoiles distantes, comme cela est observé[13].
Au début du XXe siècle, Albert Einstein élabore la théorie de la relativité, guidé en partie par le principe de Mach. Einstein espérait démontrer le principe de Mach à partir des équations de la théorie de la relativité générale. Mais des difficultés théoriques rendaient difficile cette démonstration, et Einstein finit par y renoncer[12]. La théorie de la relativité semble alors en contradiction avec le pendule de Foucault : cette théorie postule qu’il n’existe aucun référentiel privilégié, et pourtant on constate que le pendule de Foucault privilégie un référentiel précis.
Cependant, la théorie de la relativité générale implique l’existence d’une entité, l’espace-temps, qui possède une réelle existence physique[12], et qui existe indépendamment des masses, même si l’espace-temps est déformé et modelé par elles[14]. L’espace-temps permet donc de définir un référentiel par rapport auquel le pendule ne tourne pas[14],[15].
Actuellement, il n’existe pas de preuves que le référentiel du pendule est lié réellement aux masses distantes par le principe de Mach, ou à l’espace-temps. Il existe pourtant une expérience qui permettrait d’apporter des éléments de preuve : la vérification de l’effet Lense-Thirring sur le pendule[14]. Cet effet prévoit que l’espace-temps est (très faiblement) entraîné par la rotation de la Terre, et que celle-ci imprime donc un faible mouvement de rotation à l’espace-temps. Si le pendule est lié à l’espace-temps, comme le prévoit la relativité générale, on devrait observer une dérive du pendule par rapport aux étoiles de l’ordre de grandeur de l’effet Lense-Thirring, et dépendante de la latitude (contrairement à l'effet prédit par Mach, donc une correction de la trajectoire telle qu'elle est calculée en utilisant une métrique euclidienne plate comme fait, par exemple, dans l'équation ci-dessus). Cet effet n’est pas encore mesurable sur un pendule de Foucault par les technologies actuelles, parce que l'accélération de Coriolis est trop faible avec les vitesses des pendules par rapport à la Terre (sont nécessaires des satellites).
Les auteurs restent donc encore partagés sur la définition du référentiel lié au pendule. Certains comme Max Born définissent le référentiel par les masses distantes[16], d’autres directement par l’espace-temps (Brian Greene ou William Tobin (en)).
La mise en évidence de la rotation terrestre par le pendule de Foucault est une expérience très délicate. Le plan d'oscillation du pendule tourne de quelques degrés par heure (maximum, 15° aux pôles). Plusieurs phénomènes risquent de masquer ce que l'on veut mettre en évidence.
Le pendule doit être lancé sans composante de vitesse perpendiculaire au plan d'oscillation. Comme il s'agit d'un pendule sphérique, on doit effectuer la correction d'erreur systématique : Victor Puiseux a montré que si le pendule effectuait une ellipse, celle-ci entraînait un effet de précession proportionnelle à son aire et inversement proportionnelle au carré de la longueur du pendule.. Il faut utiliser un pendule long et le lancer en le lâchant sans vitesse initiale par rapport au laboratoire ; sa trajectoire sera donc légèrement elliptique, mais toute la manipulation sera alors reproductible et l'on pourra corriger les erreurs systématiques.
L'astuce de l'anneau de Charron est peu connue (cf Bulletin de la SAF de ) mais pourtant très efficace : on entretient le mouvement du pendule par un électroaimant très pointu et le cylindre est lui-même muni d'une pointe qui vient quasiment en contact de celle de l'électroaimant. Celui-ci est alimenté par un courant continu basse tension haché de la façon suivante : l'anneau de Charron (C) est placé à quelques décimètres du point d'oscillation O (pour une longueur de 1,70 m environ). Quand le fil de suspension métallique touche l'anneau très bien centré, le courant passe, il y a force électromagnétique attractive, donc retard vers la montée mais avance sur la descente. Puis aucune force lorsque le contact est perdu. Puis la symétrie pour l'autre côté. L'astuce consiste à ce que la bobine engendre un retard du courant : il y a donc bien gain global d'énergie. L'amplitude des oscillations (2 degrés environ) est imposée par le bilan énergétique. L'énergie perdue pendant une oscillation, qui croît avec l'amplitude, est exactement compensée par l'énergie fournie par l'électroaimant. Certes la période du pendule est composée de deux mouvements, l'un autour de O, et l'autre autour de (C) (de rayon très petit, 0,5 mm environ). On peut le vérifier par la mesure de T (en effectuant évidemment toutes les corrections qui s'imposent, en particulier fil d'acier maintenu en O par un mandrin cylindrique). L'originalité du système n'est pas qu'il entretienne le pendule, mais que le frottement solide du fil sur l'anneau (C) pendant une partie du mouvement, loin de perturber la précession, est au contraire un très subtil moyen pour supprimer l'influence des conditions initiales de lancement qui sont si critiques. Celui du Palais de la découverte fonctionnait sur ce principe.
Faisant usage du matériel utilisé par le professeur J. F. Cox et M. J. Brouet, au Palais de Justice de Bruxelles (voir la Belgique), l'expérience a été reproduite à Usumbura (Bujumbura maintenant) situé à 3° 22′ 57″ de latitude sud en 1956 par Georges Serrure, recteur de la préuniversitaire d'Usumbura.
Le déplacement de la direction du plan d'oscillation du pendule était très lent; un tour complet s'effectua en 17 jours environ.
L'expérience a été effectuée dans la cage d'escalier de la Brasserie du Ruanda-Urundi (maintenant Burundi)[22].
Le pendule que Foucault a installé au Panthéon de Paris en 1851 mesurait 67 mètres et portait une masse (laiton/plomb) de 28,3 kilogrammes. Foucault avait fait réaliser le matériel par l'ingénieur mécanicien Paul-Gustave Froment[25]. Une fois lancé, ce pendule oscillait pendant 6 h. La période (aller-retour) était de 16,5 s ; le pendule déviait de 11° par heure. La sphère de ce pendule est réutilisée dans le pendule de Foucault installé au Musée des arts et métiers de Paris[26]. En 1902, Camille Flammarion a renouvelé l'expérience au Panthéon[27].
Le pendule a été réinstallé sous la coupole du Panthéon en 1995, constituant une attraction très appréciée des visiteurs. Démonté pendant les travaux de restauration du Panthéon, il a été remis en mouvement, après restauration, par la Société Bodet, le [28].
Un accident a provoqué la chute du pendule original au Musée des arts et métiers le . La sphère de 28,3 kilogrammes, cabossée, devenue irrécupérable a été conservée dans les réserves du musée en Seine-Saint-Denis avant de rejoindre le musée pour être exposée en vitrine. Une copie a été installée à la place[29].
Il existe actuellement plus de 30 pendules de Foucault en Hongrie. Le premier pendule de ce type a été fabriqué en 1880 par Adolf Kunc à Szombathely[34].
Le premier pendule de Foucault a été installé en 2017 dans la cage d'escalier du groupe scolaire SZM1 de Vaduz, intégré dans une œuvre d'art de Ferdinand Gehr[36].
Un pendule se trouve dans le clocher de l'église Saint Jean (université) de Vilnius.
Un pendule se trouvait dans le bâtiment des sciences de la Faculté de droit, d'économie et de finance de l'université du Luxembourg au Grand-duché de Luxembourg. Celui-ci est actuellement démonté.
Sur les autres projets Wikimedia :